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Abstract. Small amplitude motion in tho chaotic maser model with finite temperature is 
studied in the wntext of a mean field approximation. The equilibrium Sfate is constructed 
for both the normal and superradiant phases. The linear response of the model is obtained 
in these two cases and analytical expressions for the variation of the wrresponding 
frequencies with temperature are derived. Their behaviour both in the, integrable and 
chaotic limit is discussed. Sum rules are shown to be fulfilled and relative percentages turn 
out to be temperature dependent. Finally we obtain the dynamical stability conditions for 
the chaotic maser model at finite tempeiature. 

1. Introduction 

The maser model was proposed by Dicke [l] in 1954 and since its discovery much 
has been learnt about the superradiant phase transition in connection to laser physics. 
Most of the results presently available in such a context were obtained in the so-called 
rotating wave approximation (RWA), which amounts to neglecting antiresonant terms 
in the matter-field interaction. Such an approximation provides for excellent results 
and should be valid for not too intense radiation fields. The main advantage of  working^ 
with the RWA is that it allows for exact solutions o f  the dynamical problem [2] as well 
as of thermodynamical properties [3], which can also be obtained in a mathematically 
rigorous form [4]. Recently, however, the antiresonant terms have received a lot of 
attention, especially due to the fact that they are connected with chaotic behaviour 
[ 5 ] ;  Up to now, studies with the chaotic version of the model have been performed at 
zero temperature.  the^ aim of the present investigation is not to study chaos but to 
discuss the finite temperature dependence of small amplitude motion. The linear 
response of the system is studied and we show in particular how the properties of 
collective modes and their stability behave as functions of temperature both in the 
normal and in the superradiant phase. From the experimental point of view, tunable 
lasers make it possible to study the interaction of a single atom with a single mode of 
the electromagnetic field in a cavity, at finite temperature [6]. So the dynamics of the 
one atom-one field interaction contained in the idealized case of a two-level atom 
interacting with a single quantized mode o f  the radiation field, as proposed by Jaynes 
and Cummings [7], can now be studied experimentally. Therefore, the two-level maser 
model tums out to be not only a toy model with interesting mathematical properties, 
but in fact describes a situation which exists experimentally. We think that it is of 
great interest to study the temperature dependence of the atom-field interaction in this 
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model, although the main goal of our work is to present techniques which can be 
applied to other situations as well. In order to have a clear physical insight into the 
problem, we resort to a thermal mean field approach [8] which allows for simple 
analytical results. We study in particular the RPA modes (frequencies and eigenvectors) 
as functions of temperature and an energy-weighted sum rule for thermal states. The 
redistribution of the strength between the two collective modes is also displayed. 
Stability conditions for the superradiant and normal phases are very important in the 
study of chaotic dynamics. Our results are meant to contribute as a first step in this 
direction by studying the influence of temperature on the stability conditions: when 
the critical temperature is reached, the RPA frequencies become complex and the RPA 
frequencies of the normal phase exhibit precisely the opposite behaviour. 

The paper is organized as follows. In section 2 we briefly introduce the model; 
section 3 contains the derivation of the thermal linear response properties and results. 
Conclusions are given in section 4. 
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2. The model 

The maser model consists of N identical two-level atoms coupled to an electromagnetic 
field by means of a dipole interaction. The system is enclosed in a cavity of volume 
V. The atoms are kept at fixed positions and the dimension of V is much smaller than 
the wavelength of the field so that all atoms see the same field. The Hamiltonian of 
the model reads 

G G’ 
EU;+N’/Z (a.:+ a’u;) +- N’/2 (a+uT+ au;)] (2.1) 

j = 1  

where the index j refers to the j th  atom and with 

u; = 4jziuT. 

b and G’ are coupling constants, a+,  a are Bose operators of a hamnonic oscillator 
mode with frequency E. 

3. Thermal linear response 

In the present section we use a variational mean field approach in order to calculate 
the thermal linear response of the chaotic maser model. The techniques are well known 
and thoroughly discussed in [8,9]. ~, 

3.1. Equilibrium states 

We start by constructing the equilibrium state. We follow the mean field approximation, 
which amounts to neglecting correlations, so that, for instance, (J+a) =(J+)(a). The 
most general form of the finite temperature mean field density matrix for this model 
is given by 

Do = K exp hMF (3.1) 
where 

hMF= al l ,  + azJ+ f a:J-+p,a+a +P2a++/3fa.  (3.2) 
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The approximation amounts to not including in h,, terms of the type J+a, J+a', L a ,  
J-aC. In (3.1), K is a normalization constant. The parameters a,, p, in (3.2) are real 
and a2, p2 complex. 

It is now convenient to diagonalize Do. This may be achieved by the unitary operator 

U = exp[i( qJ++ q*J-+ 5a'+ 5?a)].  

Do = UfDU (3.4) 

D = K exp( yJz + yya'a). 

(3.3). 

If the complex numbers q, q*, 5, e* are properly chosen, we have 

with 

(3.5) 

(Of course, D is diagonal in a basis of eigenvectors of JI and of the number operator 
a+a.) We minimize the free energy in order to fix the parameters y, 7'. q, q*, 5, e*. 
This procedure specifies the equilibrium density matrix in the mean field approximation. 
It may be checked that, for  the^ purpose of obtaining static properties of the system, 
it is enough to consider 

(3.6) 

and 

5=5*.  (3.7) 

The free energy of the system can now be analytically computed, 

pF=p Tr(DUHU')+Tr(D In D )  

= p [ s $ c o s  Btanh-+-+sEZ y &eY' 
2 1-eY 

+N"2(G+G')csin 

(3.8) 

with B being the inverse temperature. Minimizing this expression with respect to all 
the free parameters considered gives us two solutions: 

normal phase 
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superradiant phase 

&2 1 
(G+G')'tanh yo/2 

COS eo= - 

(3.10) 

N'I2 G +  G 
2 E  

to=--- sin O0tanh yo/2. 

We see from the above equations that the existence of the superradiant phase depends 
on the temperature. For (G+ G')'< E' no phase transition occurs in the system at any 
temperature. For (G+ G')'> there is a critical temperature T, given by the relation 
(for its inverse p.) 

&' 

( G + GI)* - - -tanh P . E / ~  (3.11) 

at which the system changes from one state to the other (the energy slopes are 
discontinuous). These results have also been obtained by Hioe [lo] using a different 
procedure. They are completely equivalent to those of Hepp and Lieb [4] if we take 
G' = 0. 

3.2. Thermal small amplitude motion 

We tum now to the study of the response of the system in its equilibrium state to a 
small perturbation. If the system is slightly perturbed it will be described by the 
time-dependent density matrix 

D(t) = ~ + D ( Y O ,  Y A )  V 

= u+(eo, to) eCiS(')D(y0, yA) e-is(r)U(so, to) (3.12) 

where U( Bo, to) = U, and D( yo, 7;) are, respectively, the unitary operator and the 
diagonal density matrix defined in the previous section. The operator S ( t )  is an 
infinitesimal Hermitian operator of~the form 

S( t )  = qJ++ V*J-+ ta++[*a  (3.13) 

We use the notation V =  e-'S(')U(Bo, to). If S = 0, D reduces to the equilibrium density 
matrix Do. A small S describes a small deviation from the equilibrium state. The time 
evolution of a mixed state in the mean field approximation is obtained from the least 
action principle 

8 1,; Ldt=O (3.14) 

with 

L=iTr(DVV+)-Tr(DVHV+). (3.15) 
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Expanding L in powers of the operator S ( t )  we obtain for the second-order Lagrangian 

L'*'=-Tr(D[S, 2 SI)-fTr(D[S, IU,HU,', SI]) (3.16) 
i 

(3.17) 

where 

N 
~=Tr (DJ , )= -cos  e a t a n h a  

2 2 

and 

G,=G*G. 

From (3.17) the equations of motion (which in this case consist of four linear coupled 
equations) are obtained and the eigenfrequencies and eigenvectors are determined. 
The equations read 

( 2 & ~ - a ) ~ - + b g + - c f - = O  

(-2&o-a)q++b(--cg+=O~ 

(-U+ &)CA + bq+- ~ 7 -  = 0 
( o + E ) [ + +  bv--cv+ = O  

(3.18) 

where 

C = J ,  " / z ~ ~ ~ e o + " / 2 .  - (  G+ G- 1 
We have used the following ansatz for the eigenvectors: 

v=?l-e-'- '+v~e'ol 

5 ~ =  g- + 5* iw, + e  . , 
The eigenfrequencies can be expressed analytically, 

(3.19) 

(3.20) 

(3.21) 
~(2xD+A)*((2&D+A)'-8&(AD-BC))"Z~ 

4j; 
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with 
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a2 
2-4 

A = T + b 2 - c 2  

(3.22) 

The dependence of the positive frequencies on temperature is displayed in 
figure 1 both for the normal phase (figure l ( a ) )  and for the superradiant phase (figure 
l ( b ) ) .  Notice that in the superradiant case one of the frequencies goes to zero as the 
critical temperature is reached, becoming complex after this point. We see then that 
the superradiant phase ceases to be stable and the normal phase is stable from there 
on (it is straightforward to check that while the superradiant phase exists, the corres- 
ponding normal phase frequency is complex). We can generalize these comments on 
the stability of the system. From (3.14) the three general thermal stability conditions 

2zD + A  < 0 
and 

0 < SX(AD -BC) < ( 2 z D  +A)' (3.23) 

Figure 1. [ a )  Pairs of eigenfrequencies of the system as functions of the inverse temperature 
p in the nom1 phase for two values of the coupling parameter G-. ( b )  Same as in ( U )  

but for the superradiant phase. Notice the existence of one constant frequency mode for 
G-=1.5, G'=O, which reflens the breaking of the symmetry [H, J.+a+a]=O in the 
superradiant phase, in the absence of the antiresonant term [ G = O ) .  ?he inverse of the 
critical temperature 7, at which the phase transition occurs is shown by an armw. 
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are established. When T- t  0, these stability conditions reduce to those obtained in [ll] 
from the study of the monodromy matrix of the classical chaotic maser model. 

We now present the eigenvectors: 

b i c a  
(&-Or) 

e-=-- e; (3.24) 

b a i c  5; = -- 
( & + m i )  e;. 

These eigenvectors specify the following boson operators which characterize the 
collective excited states of the system 

(3.25) 

These operators diagonalize the quadratic part of the Hamiltonian [ 121. We use the 
normalization condition to determine 0:. 

Tr(D[S;, $1) = 6,. (3.26) 

Any relevant one-body observable can be expanded in terms of the operators we have 
just constructed, equations (3.25), 

2 

i= l  
6= c (CjSs:+C?Si). (3.27) 

The coefficients c, are obtained easily as 

c,=Tr(D[S:, 61).  (3.28) 

In the same way as the frequency w is interpreted as the excitation energy of the 
thermal excited state i with respect to the thermal equilibrium state, the quantity Icf 
should be interpreted as the thermal transition probability from the state of thermal 
equilibrium to the collective state i, induced by the external perturbation 0. The 
concepts of ‘state of thermal equilibrium’ and ‘thermal collective state’ should be 
understood, of course, in a statistical sense. The corresponding thermal transition 
strength satisfies the energy weighted sum rule [I21 

(3.29) 

The percentage of the sum rule in each one of the two thermal collective modes 
obtained is clearly a function of temperature also. In figure 2 we show the distribution 
of the percentages of the sum rule exhausted by the i = 1 term, the atomic mode, in 
+e normal phase. The perturbing potentials are assumed to be 0 =J, (full line) and 
0 = a+a+ (dashed line). These situations should correspond to the perturbations of 
the system by external fluxes of photons ,and atoms, respectively. For the parameters 
indicated, only the normal phase exists for all temperatures. On the other hand, by 
choosing the parameters shown in figure 3, the superradiant phase is the one which 
is stable below the critical temperature. h a  rather small temperature interval, the 
percentages change abruptly and then stabilize. 
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Figure 2. Fractions of the sum rule exhausted by the i = 1 term, the atomic collective mode, 
as functions of the inverse temperature P for the coupli?g parameters G+= 0.5,-G- = 0.1, 
corresponding to transitions induced by the operator 0 = J, (full line) and 0 = Q +a+ 
(dashed line). For these values of the parameters only the normal phase exists. 

Figure3. Sameas figure2 but forthesuperradiantphasewithcoupling parameters G+=l.S 
and G_= 0.5. 

It may be in order to recall the relevant role which ‘sum rules’ have played in 
quantum physics ever since the pioneering work of Thomas, Reiche and Kuhn in 
atomic physics. These authors were able to derive a useful additive relation between 
the oscillator strengths associated with the possible excitations of an atom from its 
ground state I+,,) to any of its excited states I&), the transitions being induced by the 
dipole operator associated with an extemal plane wave. Similar sum rules hold for 
any arbitrary quantal system perturbed by an external potential 6. The following 
relation holds 

1 ~ ~ ~ - ~ ~ ~ l ~ 4 ~ l ~ 1 4 ~ ~ l z ~ ~ ~ o l ~ ~ ~  [H,  611143. (3.30) 
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Here, H is the Hamiltonian of the system and E”, Eo are the eigenvalues associated 
with the*excited state 14”) and with the ground state [bo). The quantity ( E v -  
Eo)l(+.101+~)12 is the oscillator strength associated with the transition from I+o) to I+”). 
This sum rule must be~modified if we wish to describe processes in which the system 
is not initially in its ground state I&,) but is in a thermal mixed state of equilibrium, 
described by the density matrix D ,  such that Dl+u)=P&&), P,>O, X , P , = l .  Of 
course, P, is the ensemble probability of the energy eigenstate I+”). Then the following 
thermal sum rule [13] holds 
1 ( E ,  - E,)(P, - ~v)l(h161+J12=~~ P v ( + v i [ 6  I K  6311+.). (3.31) 

P.V(P”> P,.) 

The quantity (E,  - E,)(P, - Pv)l( +v~6~+,)~z is the thermal oscillator strength associated 
with the transition from 14”) to I+,J. The thermal sum rule (3.29) is precisely the mean 
field version of the thermal sum rule (3.31). 

4. Conclusions 

In the present contribution we have analysed the thermal linear response behaviour 
of the~chaotic maser model in the context of a thermal mean field approach. Both 
responses from normal and superradiant phase have been obtained. The eigenfrequen- 
cies can be calculated analytically and are explored as a tool to test the dynamical 
stability of the system under various conditions. Sum~rules are also derived and the 
relative percentages are shown to be temperature dependent. It would bevery interesting 
to investigate other chaotic models in the same way. The study of the influence of 
temperature on the behaviour of chaotic systems is in its infancy yet. 
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